Development of High Resolution X-Ray Crystal Spectrometry for HED Plasmas K.W. HILL, PPPL, M. BITTER, Retired, L. DELGADO-APARICIO, N.A. PABLANT, PPPL, P. BEIERSDORFER, M. SCHNEIDER, K. WIDMANN, LLNL, M. SANCHEZ, ESRF — High resolution ($\lambda/\delta\lambda \sim10,000$) 1D spatially resolved x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as high energy density plasmas (HEDP) and targets on x-ray light source beam lines, with spatial resolution of microns, as demonstrated by laboratory experiments using a 250-micron 55Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range $10^{-8} - 10^{-6}$ times source x rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to HEDP facilities, and predictions of performance on these facilities will be presented.

1Performed under the auspices of the US DOE by PPPL under Contract DE-AC02-76-CHO-3073 and LLNL under Contract DE-AC52-07NA-27344.