Abstract Submitted
for the DPP12 Meeting of
The American Physical Society

H-mode threshold physics studies on Alcator C-Mod in support of ITER Y. MA, J.W. HUGHES, B. LABOMBARD, A.E. HUBBARD, E.S. MAR-MAR, MIT PSFC, D.C. MCDONALD, EFDA — Comprehensive studies on H-mode threshold physics have been conducted on Alcator C-Mod tokamak, covering many ITER-relevant conditions, e.g. similar magnetic field and density range, metallic wall, and divertor configuration. C-Mod experiments confirm that the density dependence of H-mode threshold power (P_{th}) is U-shaped without clear dependence on plasma current, and the local minimum of P_{th} in density (n_{min}) decreases as B_T is reduced [1]. An effect of divertor geometry on P_{th} was identified, with a dramatic (~50%) reduction in P_{th} seen in “slot” divertor operation accompanied by longer SOL connection length [2]. Experimental results were also compared with a new physics-based model for P_{th} [3], showing reasonable agreement of density, B_T, and divertor geometry dependences with model predictions. A significant implication of this model is that n_{min} occurs as the SOL transitions from sheath-limited to conduction-limited regime, which also seems to agree with experiments. Supported by USDoE award DE-FC02-99ER54512.

Yunxing Ma
MIT PSFC

Date submitted: 13 Jul 2012
Electronic form version 1.4