Abstract Submitted for the DPP12 Meeting of The American Physical Society

First Production of C_{60} Nanoparticle Plasma Jet for Study of Disruption Mitigation for ITER¹ I.N. BOGATU, J.R. THOMPSON, S.A. GALKIN, J.S. KIM, FAR-TECH, Inc., S. BROCKINGTON, A. CASE, S.J. MESSER, F.D. WITHERSPOON, HyperV Technologies Corp. — Unique fast response and large mass-velocity delivery of nanoparticle plasma jets (NPPJs) provide a novel application for ITER disruption mitigation, runaway electrons diagnostics and deep fueling. NPPJs carry a much larger mass than usual gases. An electromagnetic plasma gun provides a very high injection velocity (many km/s). NPPJ has much higher ram pressure than any standard gas injection method and penetrates the tokamak confining magnetic field. Assimilation is enhanced due to the NP large surface-to-volume ratio. Radially expanding NPPJs help achieving toroidal uniformity of radiation power. FAR-TECH's NPPJ system was successfully tested: a coaxial plasma gun prototype (~ 35 cm length, 96 kJ energy) using a solid state TiH₂/C₆₀ pulsed power cartridge injector produced a hyper-velocity (>4 km/s), high-density (> 10^{23} m⁻³), C_{60} plasma jet in ~0.5 ms, with ~1-2 ms overall response-delivery time. We present the TiH_2/C_{60} cartridge injector output characterization (~180 mg of sublimated C_{60} gas) and first production results of a high momentum C_{60} plasma jet (~0.6 g·km/s).

¹Work supported by the US DOE DE-FG02-08ER85196 grant

Ioan-Niculae Bogatu FAR-TECH, Inc.

Date submitted: 12 Jul 2012

Electronic form version 1.4