Abstract Submitted for the DPP12 Meeting of The American Physical Society

Eruption of an arched magnetic flux rope in an ambient magnetoplasma¹ SHREEKRISHNA TRIPATHI, WALTER GEKELMAN, Department of Physics and Astronomy, UCLA — Arched magnetic flux ropes (AMFRs) are arch-shaped, current-carrying, magnetized plasma structures that ubiquitously exist in the solar atmosphere. A laboratory plasma experiment [Tripathi and Gekelman, PRL 105, 075005 (2010)] has been built to study the eruption of AMFRs in two essential steps: (i) production of an AMFR (n~ 10^{19} m⁻³, T_e ~14 eV, B~1 kG, $L\sim0.5$ m) with a persistent appearance lasting several Alfven transit times using a Lanthnum Hexaboride (LaB₆) plasma source, and (ii) generation of controlled plasma flows from the foot-points of the AMFR using two laser beams (1064 nm, 1 J/pulse). An additional LaB_6 source produces a large magnetoplasma in the background. The laser generated flows drive the eruption by injecting plasma and magnetic flux in the AMFR. The experiment is highly reproducible and runs continuously with a 0.5 Hz repetition rate, hence evolution of the AMFR is recorded using computer-controlled movable probes in 3D. High-speed imaging, Langmuir and 3-axis magnetic-loop probes are the main diagnostic tools. New results from this experiment on global kink-mode oscillations of the AMFR, excitation of fast waves, and ejection of a large magnetic flux rope from the apex of the AMFR will be presented.

¹Work supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

Shreekrishna Tripathi Department of Physics and Astronomy, UCLA

Date submitted: 18 Jul 2012

Electronic form version 1.4