Abstract Submitted for the DPP12 Meeting of The American Physical Society

Thermonuclear Yield Degradation Due to Low Mode Capsule Shape Asymmetries on NIF Inertial Fusion Implosions ROBBIE SCOTT¹. ^ASTFC Rutherford Appleton Laboratory, Harwell Oxford, UK, D.S. CLARK, D.K. BRADLEY, D.A. CALLAHAN, M.J. EDWARDS, S.W. HAAN, M.M. MARINAK, R.P.J. TOWN, ^BLawrence Livermore National Laboratory, Livermore, USA, P.A. NORREYS, ^A, L.J. SUTER, ^B — The effects of Legendre polynomial P_4 capsule shapes on NIF inertial fusion implosions have been modelled using the radiationhydrodynamics code Hydra. Large P_4 mode shapes cause regions of the hotspot/DT ice interface to become unstable during capsule deceleration, preventing stagnation; up to 50% of the peak capsule kinetic energy remains unconverted to hotspot pressure, causing hotspot pressures to fall by up to $3.5 \times$ and neutron yields to be reduced by up to 20×. Synthetic x-ray images show that positive P_4 amplitudes > 5μ m are undetectable experimentally when using cryogenic DT capsules. Analysis of DHe³ filled CH capsules and comparison with NIF experimental data indicate that the yield reduction for DT capsules with the same x-ray drive would be $\sim 10 - 20 \times$. The presence of undetectable P_4 modes would explain many characteristics of current NIF implosions including; large negative P_2 modes, the ~ 30μ m hotspot size, the low inferred pressures and hotspot masses, and most importantly the $\sim 10 \times$ discrepancy between the measured capsule kinetic energy and the observed neutron yield. Experimental methods are proposed to infer the P_4 mode amplitude of DT capsules and then reduce this to ignition specification.

¹also affiliated to B and Department of Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, London, UK

Robbie Scott STFC Rutherford Appleton Laboratory, Harwell Oxford, UK

Date submitted: 16 Jul 2012

Electronic form version 1.4