Abstract Submitted for the DPP12 Meeting of The American Physical Society

Toroidal asymmetry of divertor heat deposition in NSTX¹ JOON-WOOK AHN, ORNL, KAIFU GAN, ASIPP, RAJESH MAINGI, JOHN CANIK, TRAVIS GRAY, JEREMY LORE, ORNL, FILIPPO SCOTTI, LANE ROQUE-MORE, PPPL, ADAM MCLEAN, VLAD SOUKHANOVSKII, LLNL — 2-D heat flux data calculated by a 3-D heat conduction solver allowed for the evaluation of peak heat flux (q_{peak}) and heat flux width (λ_q) for each toroidal angle, which generates a toroidal array of \mathbf{q}_{peak} and λ_q at each time slice. Then the toroidal degree of asymmetry (DoA) of q_{peak} and λ_q as a function of time was defined as $DoA(q_{peak}) = \sigma_{qpeak}/mean(q_{peak})$ and $DoA(\lambda_q) = \sigma_{\lambda q}/mean(\lambda_q)$, where σ is the standard deviation of q_{peak} and λ_q over data in the toroidal array. In case of ELMs and 3-D field application, the helical heat deposition produces additional scatter of data around mean values to the background scatter level without these events and it raises DoA for both q_{peak} and λ_q . Both values of $DoA(q_{peak})$ and $DoA(\lambda_q)$ are highest at the ELM peak times, with $DoA(q_{peak})$ up to ~0.9 and $DoA(\lambda_q)$ up to ~ 0.3 for typical type-III ELMs, while they become lower toward the later stage of the inter-ELM period, eg, $DoA(q_{peak}) \sim 0.15$ and $DoA(\lambda_q) \sim 0.05$. The correlation between $DoA(q_{peak})$ and $DoA(\lambda_q)$ is the strongest at the ELM peak times and becomes weaker later in the ELM cycle.

¹This work was supported by the US Department of Energy, contract numbers DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-AC52-07NA27344.

Joon-Wook Ahn Oak Ridge National Laboratory

Date submitted: 13 Jul 2012

Electronic form version 1.4