Abstract Submitted
for the DPP12 Meeting of
The American Physical Society

Electron Acoustic Waves in Pure Ion Plasmas

F. ANDEREGG, M. AFFOLTER, C.F. DRISCOLL, T.M. O’NEIL, UCSD, F. VALENTINI, U. Calabria (Italy) — Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function \(D_r, D_i \) has \(D_r = 0 \); and “flattening” of \(f(v) \) near the wave phase velocity \(v_{ph} \) gives \(D_i = 0 \) and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column. At low excitation amplitudes, the EAWs have \(v_{ph} \approx 1.4 \bar{v} \), in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with \(1.3 \bar{v} < v_{ph} < 2.1 \bar{v} \). Here, the final wave frequency may differ from the excitation frequency since the excitation modifies \(f(v) \); and recent theory analyzes frequency shifts from “corners” of a plateau at \(v_{ph} \). Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEEN waves in HEDLP geometries.

1Supported by grants from NSF-DOE partnership and DOE HEDLP.

F. Anderegg
UCSD