Increase in compact toroid mass by accelerator-region ionization of high-Z noble gas on CTIX

ROBERT D. HORTON, DAVID Q. HWANG, FEI LIU, SEAN HONG, RUTH KLAUSER, RUSSELL W. EVANS, University of California, Davis, DEAN A. BUCHENAUER, Sandia National Laboratory, Livermore, CA — A promising technique for runaway electron (RE) mitigation in large-tokamak disruptions is the injection of compact toroid (CT) plasmas of high atomic number. With sufficient kinetic energy density, high-Z CTs can reach the tokamak magnetic axis where RE effects are strongest. At CT velocities of 100 km/s or more, penetration to the axis occurs on a sub-millisecond time scale. In addition to reducing avalanche RE production by collisions, high-Z CTs can cool RE by bremsstrahlung effects. From theoretical calculations, using Xe ions, bremsstrahlung cooling exceeds the effect of collisions at RE energy above about 10 MeV, a value expected to be well exceeded in large tokamaks. Past experiments on the CTIX compact-toroid injector have demonstrated increased CT mass using snowplow accretion of puffed noble gas by an initial hydrogenic CT. These experiments will be continued using a higher ratio of accreted high-Z plasma to H plasma, to maximize CT kinetic energy density. Results will be compared with a 1D model using external circuit effects, coaxial railgun kinetics, and ionization. The model will be used to predict performance of CT injectors of greater energy, suitable for RE suppression on mid-sized tokamaks.

¹This work supported by U.S. DOE Grants DE-AC04-94AL85000 and DE-FG02-03ER54732.

Robert Horton
University of California, Davis