Abstract Submitted for the DPP12 Meeting of The American Physical Society

Squeeze Effects on Plasma Wave Damping¹ A. ASHOURVAN, D.H.E. DUBIN, UCSD — We present a theory for the damping of cylindrically symmetric plasma modes due to a cylindrically symmetric squeeze potential of magnitude ϕ_s applied to the center of a non-neutral plasma column. Squeeze divides the plasma into passing and trapped particles; the latter cannot pass over the squeeze. Damping of the mode in collisionless theory is caused by Landau resonances at energies E_n for which the bounce frequency $\omega_b(E_n)$ and the wave frequency ω satisfy $\omega = n\omega_n(E_n)$. Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, squeeze induces bounce harmonics with $n \gg 1$ in the perturbed distribution. The harmonics allow resonances at energies $E_n \leq T$ and cause a substantial damping at phase velocities much larger than thermal velocity, which is not expected for unsqueezed plasma. In the regime $\omega/k \gg \sqrt{T/m}$ (k is the wave number) and $T \gg \phi_s$, the resonance damping rate has a ϕ_s^2 dependence. This behavior is consistent with the observed experimental results.

¹Supported by NSF PHY-0903877 and DOE DE-SC0002451.

D.H.E. Dubin UCSD

Date submitted: 17 Jul 2012

Electronic form version 1.4