Cyclotron Resonances in a Non-Neutral Multispecies Ion Plasma1

M. AFFOLTER, F. ANDEREGG, C.F. DRISCOLL, D.H.E. DUBIN, UCSD —

Shifts of cyclotron mode frequencies away from the single particle Ω_c are observed to be proportional to the $E \times B$ rotation frequency in non-neutral ion plasmas. These cylindrical ion plasmas consist of Mg24+, Mg25+, and Mg26+, with H\textsubscript{3}O+, O2+ and H\textsubscript{2}+ impurities. Laser cooling of the majority species, Mg24+, enables temperature control over the range $10^{-5} < T < 1$ eV, as well as determination of cyclotron mode frequencies from launched wave absorption. At moderately low temperatures, the $m = 1$ and $m = 2$ cyclotron frequency shifts are well described by cold fluid theory for an equilibrium square profile.2 However, at $T < 10^{-3}$ eV centrifugal mass separation can cause order unity changes in these shifts. For $T \geq 1$ eV, the observed frequency shifts are reduced substantially. Prior high temperature experiments1 saw majority species shifts consistent with cold fluid theory, and theoretically unexplained minority species shifts $\Delta f \sim 2f_{Dio}$. Comparisons will be made with nascent theory to determine the effects of temperature and profile shape on these cyclotron modes.

1Work supported by NSF PHY-0903877 and DOE DE-SC0002451.