Knudsen Reactivity Reduction: Kinetic Theory of Diffusion Process

ERIC NELSON, EVAN DODD, KIM MOLVIG, BRIAN ALBRIGHT, NELSON HOFFMAN, LANL, GEORGE ZIMMERMAN, ED WILLIAMS, LLNL

— Previous work that found significant fusion reactivity reduction due to Knudsen layer losses [1], utilized a twice simplified treatment of the loss process that first went to the diffusion limit of the transport and then replaced the spatial kinetic diffusion operator by a local loss process. The derivation of kinetic diffusion utilized a stochastic differential equation technique to show that convection in combination with pitch-angle scattering yields spatial diffusion asymptotically over long time and spatial intervals. The same technique can be extended to include the independent energy scattering stochastic process. For the linear Fokker-Planck equation that governs the tail ions this gives a very efficient (particle like) numerical technique that can solve the complete ion tail problem in the three phase space dimensions of pitch-angle, energy, and spatial coordinate. The method allows inclusion of a temperature gradient and specified ambipolar electric fields. We present simulation results of the depleted tail distributions and fusion reactivities, and compare with the predictions of the simple local loss method.


1This work was performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory.