Modeling of High-Power Fundamental O-mode ECRH Plasmas in the HSX Stellarator1 J.W. Radder, K.M. Likin, J.N. Talmadge, D.T. Anderson, G. Weir, HSX Plasma Lab, University of Wisconsin, Madison, S. Murakami, Department of Nuclear Engineering, Kyoto University, Japan — Hard x-ray and ECE measurements provide evidence of suprathermal electron populations in the HSX stellarator for low density, 100 kW fundamental O-mode ECRH. A five-dimensional Fokker-Planck code, GNET, is used to calculate the deviation from a Maxwellian background distribution via a Monte Carlo technique. Calculated electron distribution functions are presented for low line average density, high-temperature plasmas ($n_e \approx 2 \times 10^{18} \text{ m}^{-3}, T_e \approx 1.5 \text{ keV}$) with low collision frequencies in the heating region. Calculated X-ray bremsstrahlung emission spectra and electron cyclotron emission spectra will be presented for non-Maxwellian electron distribution functions obtained with GNET and compared to measured spectra.

1This work is supported by DOE grant number DE-FG02-93ER54222.

Jerahmie Radder
HSX Plasma Lab, University of Wisconsin, Madison

Date submitted: 17 Jul 2012

Electronic form version 1.4