Abstract Submitted for the DPP12 Meeting of The American Physical Society

Recent results of the Defect-Induced Mix Experiments (DIME) on NIF¹ M.J. SCHMITT, P.A. BRADLEY, J.A. COBBLE, P. HAKEL, S.C. HSU, N.S. KRASHENINNIKOVA, G.A. KYRALA, T.J. MURPHY, K.A. OBREY, R.C. SHAH, I.L. TREGILLIS, Los Alamos National Laboratory, S.C. CRAXTON, P.W. MCKENTY, Laboratory for Laser Energetics, U. of Rochester, R.C. MANCINI, H.M. JOHNS, TIRTHA JOSHI, DANIEL MAYES, University of Nevada, Reno — Investigations of directly driven implosions have been performed including experiments on Omega, and more recently NIF, to deduce the extent and uniformity of 4π and defect-induced mix near the shell/gas interface of plastic (CH) capsules filled with 5 atm D_2 gas. Imaging diagnostics are used to measure the spatial variation of mix caused by the growth of non-uniformities in both capsule and laser drive characteristics. Thin $(2\mu m)$ layers containing 1-2% (atomic) mid-Z dopants are imaged spectrally at late time in the implosion using multiple monochromatic imaging of H-like and He-like atomic line emission. Areal image backlighting of the capsules provides both r(t) and the symmetry of the implosion. Recent results will be shown including inferred 4π mix width, laser imprint induced mix, and mix from capsule variations.

¹This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

M.J. Schmitt Los Alamos National Laboratory

Date submitted: 20 Jul 2012 Electronic form version 1.4