Abstract Submitted for the DPP13 Meeting of The American Physical Society

Guiding Center Codes of High Accuracy¹ ROSCOE WHITE, Princeton University — Guiding center simulations are an important means of predicting the effect of resistive and ideal magnetohydrodynamic instabilities on particle distributions in toroidal magnetically confined thermonuclear fusion research devices. Because saturated instabilities typically have amplitudes of $\delta B/B$ of a few times 10^{-4} numerical accuracy is of concern in discovering the effect of mode particle resonances. We develop a means of following guiding center orbits which is greatly superior to the methods currently in use. In the presence of ripple or time dependent magnetic perturbations both energy and canonical momentum are conserved in a time step to better than one part in 10^{14} , an improvement of nine orders of magnitude, and the relation between changes in canonical momentum and energy is also conserved to very high order.

¹US Dept of Energy Contract DE-AC02-76CH03073

Roscoe White Princeton University

Date submitted: 10 Jun 2013

Electronic form version 1.4