On Nonlinear Geodesic Acoustic Modes in Tokamak Plasmas

ZHIYONG QIU, IFTS, ZJU, LIU CHEN, IFTS, ZJU and UCI, FULVIO ZONCA, ENEA, Frascati — It is shown that, in tokamak plasmas, finite drift/banana-orbit width (FOW) effects play crucial roles in the nonlinear evolution of Kinetic/Geodesic Acoustic Modes (KGAM/GAM) [1, 2]. In particular, it is found that, in contrast to the negligible second-harmonic generation, KGAM/GAM can generate appreciable zero-frequency zonal flow (ZFZF) [3] due to the FOW effects. On the other hand, it is shown that, ZFZF has negligible effects on the dynamics of GAM/KGAM. The implications of these findings for nonlinear dynamic evolutions of zonal structures spontaneously generated by drift wave turbulences are discussed.


Zhiyong Qiu
Institute for Fusion Theory and Simulation, Zhejiang University, China

Date submitted: 10 Jul 2013
Electronic form version 1.4