Abstract Submitted for the DPP13 Meeting of The American Physical Society

On improving impedance probe plasma potential measurements in low density plasma¹ DAVID WALKER, Sotera, Inc, DAVID BLACKWELL, RICHARD FERNSLER, WILLIAM AMATUCCI, Plasma Physics Division, Naval Research Laboratory — We have used impedance probes of various sizes and shapes in demonstrating a method of determining plasma potential, φ_p , when the probe radius is much larger than the Debye length. The method^{2,3} relies on applying a small amplitude ac signal to a probe in a plasma and measuring the complex reflection coefficient, Γ , as a function of varying probe bias, V_b . Re(Z_{ac}) (the real part of the ac plasma impedance determined from Γ) is plotted versus V_b , and a minimum predicted by theory occurs at φ_p for a large range of electron density, n_e .⁴ However, the frequency range of the applied signal is restricted and as n_e decreases it becomes even more restrictive. In addition, the minimum in $\operatorname{Re}(Z_{ac})$ (~ $1/n_e$) becomes more difficult to discern. Here, we suggest additional means to isolate φ_p . These measures (1) incorporate Γ to search for a minimum, (2) use not only the first derivative of $\operatorname{Re}(Z_{ac})$, but also that of $\operatorname{Im}(Z_{ac})$ with respect to V_b and, (3) use the second derivatives of both. With the additional indicators, φ_p is more easily detected in low density plasma. We present data for cylinders, spheres and a disk. Phys. Plasmas 17, 113503 (2010). NRL Memorandum Report 6750-12-9413 (2012).

¹This work supported by the Naval Research Laboratory Base Program
²Phys. Plasmas 17, 113503 (2010).
³NRL Memorandum Report 6750-12-9413 (2012).
⁴Phys. Plasmas 17

David Walker Sotera, Inc

Date submitted: 10 Jul 2013

Electronic form version 1.4