On improving impedance probe plasma potential measurements in low density plasma

DAVID WALKER, Sotera, Inc, DAVID BLACKWELL, RICHARD FERNSLER, WILLIAM AMATUCCI, Plasma Physics Division, Naval Research Laboratory — We have used impedance probes of various sizes and shapes in demonstrating a method of determining plasma potential, φ_p, when the probe radius is much larger than the Debye length. The method\(^2,3\) relies on applying a small amplitude ac signal to a probe in a plasma and measuring the complex reflection coefficient, Γ, as a function of varying probe bias, V_b. $\text{Re}(Z_{ac})$ (the real part of the ac plasma impedance determined from Γ) is plotted versus V_b, and a minimum predicted by theory occurs at φ_p for a large range of electron density, n_e.\(^4\) However, the frequency range of the applied signal is restricted and as n_e decreases it becomes even more restrictive. In addition, the minimum in $\text{Re}(Z_{ac}) \ (\sim 1/n_e)$ becomes more difficult to discern. Here, we suggest additional means to isolate φ_p.

These measures (1) incorporate Γ to search for a minimum, (2) use not only the first derivative of $\text{Re}(Z_{ac})$, but also that of $\text{Im}(Z_{ac})$ with respect to V_b and, (3) use the second derivatives of both. With the additional indicators, φ_p is more easily detected in low density plasma. We present data for cylinders, spheres and a disk.

\(^1\)This work supported by the Naval Research Laboratory Base Program

\(^3\)\textit{NRL Memorandum Report 6750-12-9413}(2012).

\(^4\)\textit{Phys. Plasmas 17}