An analytical theory for lateral Rayleigh-Taylor instability of a collimated MHD cylindrical plasma

XIANG ZHAI, PAUL BELLAN, Applied Physics, Caltech — A Rayleigh-Taylor (RT) instability is observed in the Caltech plasma jet experiment [1], when the current-carrying plasma tube undergoes kink instability and accelerates laterally from the original axis. This acceleration produces perpendicular to the cylindrical plasma an effective gravity that drives a fast, fine-scale RT which results in a fast magnetic reconnection. None of the existing RT theory considers the situation where a quasi-uniform (effective) gravity is perpendicular to a cylindrical magnetized plasma. We have developed an analytical RT model for this configuration. The effective gravity splits and couples an infinite set of azimuthal modes, leading to a dynamics that combines RT instability, current-driven instability, magnetic tension and cylindrical geometry. The theory successfully explains the RT wavelength and growth rate observed in the Caltech experiment.


DOE, NSF

Xiang Zhai
Applied Physics, Caltech

Date submitted: 10 Jul 2013