Abstract Submitted
for the DPP13 Meeting of
The American Physical Society

Voltage scale for electro-thermal runaway

Y.Y. LAU, U of Michigan, Ann Arbor, MI, USA, D. CHERNIN, SAIC, McLean, VA, USA, PENG ZHANG, R.M. GILGENBACH, ADAM STEINER, U of Michigan, Ann Arbor, MI, USA — Contact problems account for 40% of all electrical/electronic failures [1]. Current crowding leads to intense local heating in both bulk [2] and thin film contacts [3], and is a concern to high power microwave sources, pulsed power systems, field emitters, thin film devices, and interconnects, etc. We investigate electro-thermal instability (ET) due to the increase in electrical conductivity as temperature increases, which may lead to thermal runaway at fixed voltage. We deduce a voltage scale for ET onset [4], \(V_s = \sqrt{\kappa/\sigma'_0} \) [in volts], where \(\kappa \) is the thermal conductivity [in W/(m-K)] and \(\sigma'_0 \) is the rate of change of the electrical conductivity with respect to temperature [in 1/(ohm-m-K)]. \(V_s \) depends only on material properties and is independent of geometry or the operating voltage. It measures the intrinsic tolerance of the material to ET. The calculated \(V_s \) are consistent with the well-known properties of several common materials, such as Si, Ge, C (graphite), and SiC [4].

Supported by an AFOSR grant on the Basic Physics of Distributed Plasma Discharges, AFOSR grant FA9550-09-1-0662, and L-3 Communications Electron Device Division.

Peng Zhang
U of Michigan, Ann Arbor, MI, USA

Date submitted: 11 Jul 2013

Electronic form version 1.4