Energy Confinement for Low Recycling Wall Conditions in the Lithium Tokamak Experiment1 C.M. JACOBSON, D.P. BOYLE, E.M. GRANSTEDT, R. KAITA, M. LUCIA, B.P. LEBLANC, R. MAJESKI, J.C. SCHMITT, PPPL, S. KUBOTA, UCLA — The Lithium Tokamak Experiment (LTX) is a spherical tokamak designed to study the low-recycling regime through the use of lithium-coated shells conformal to the LCFS. A lowered recycling rate is expected to flatten core T_e profiles, raise edge T_e, strongly affect n_e profiles, and enhance confinement. A Thomson scattering diagnostic uses a 20 J, 36 ns FWHM pulsed ruby laser to measure T_e and n_e at 11 radial points on the horizontal mid-plane, spaced from the magnetic axis to the outer edge at a single temporal point for each discharge. Scattered light is imaged through a spectrometer onto an intensified CCD. The diagnostic is absolutely calibrated using a precision light source and Raman scattering. Measurements of n_e are compared with line integrated density measurements from a microwave interferometer. The system can make measurements at $n_e \geq 2 \times 10^{18} \text{m}^{-3}$. W_{kin} is calculated from T_e and n_e profiles with CHERS measurements to constrain T_i. W_{tot} is measured using a compensated diamagnetic loop. These measurements and a magnetic equilibrium allow determination of τ_E, which is compared to scaling law predictions under various wall conditions. Dependence of T_e profile shapes on wall conditions is also discussed.

1Supported by US DOE contract #DE-AC02-09CH11466.

C. M. Jacobson
PPPL

Date submitted: 12 Jul 2013

Electronic form version 1.4