Access to and performance of I-mode plasmas on Alcator C-Mod¹
A.E. HUBBARD, S.M. WOLFE, S.-G. BAEK, R.M. CHURCHILL, N. HOWARD,
J.W. HUGHES, Y. LIN, E.S. MARMAR, M.L. REINKE, J.E. RICE, J.L. TERRY,
C. THEILER, J.R. WALK, A.E. WHITE, D.G. WHYTE, S.J. WUKITCH, MIT
Plasma Science and Fusion Center, I. CZIEGLER, UC San Diego, Center for Energy
Research — The I-mode regime of operation features an edge thermal transport
barrier, without a particle barrier. Stationary conditions are thus achieved without
impurity accumulation, and usually without ELMs. In contrast to the EDA H-mode
regime on Alcator C-Mod, it is readily accessed at low q_{95} and low collisionality,
both relevant for ITER. Analysis of a dataset of 400 discharges at $q_{95} \sim 3$ shows
normalized energy confinement in I-modes reaches or exceeds that in most H-modes,
up to $H_{98} = 1.2$. Confinement and pedestal temperature increase with input power.
In some cases I-mode is maintained up to the maximum available power (5 MW
ICRF) while in others a transition to H-mode limits the performance. Understanding
and extending the conditions for entering and staying in I-mode is thus critical for
extrapolation of the regime. Experiments have extended the regime both to lower
densities and to higher densities and powers through gas puffing into established I-
modes. Results from an expanded database of C-Mod discharges will be presented,
along with details of I-mode profiles and fluctuations, including GAMs and a weakly
coherent mode, which are providing insights into the physics of the regime.

¹Supported by DOE award DE-FC02-99ER54512.

Amanda Hubbard
MIT Plasma Science and Fusion Center

Date submitted: 12 Jul 2013