Abstract Submitted for the DPP13 Meeting of The American Physical Society

Overview of Recent Steady-State Scenario Experiments on DIII-D¹ C.T. HOLCOMB, LLNL, J.R. FERRON, A.M. GAROFALO, D.C. PACE, T.W. PETRIE, T.C. LUCE, C.C. PETTY, GA, J.M. PARK, ORNL, W.W. HEIDBRINK, UC Irvine, G.R. MCKEE, U. Wisconsin, T.L. RHODES, UCLA, C. HOLLAND, UCSD, F. TURCO, Columbia U., W.M. SOLOMON, PPPL — On DIII-D, on- and off-axis neutral beams and electron cyclotron heating have expanded access to a wide range of q-profiles. Plasmas with $q_{min} = 1 - 3$ have been evaluated for high β steady-state operation. With $q_{min} > 2$ and no internal transport barrier, ideal-wall kink mode β_N limits >4 are calculated but the global energy confinement is low compared to lower q_{min} plasmas. The thermal and fast ion transport dependence on q_{min} will be discussed, as well as the dependence of stability and confinement on ρ_{qmin} and $q_0 - q_{min}$, and the characteristics of plasmas dominated by bootstrap current at high β_p . At intermediate $q_{min} \ge 1.5$, high noninductive current fraction is possible with performance that projects to $Q \sim 5$ in ITER, both in double null and ITER-like shape. Divertor heat flux is reduced using increased radiation from impurity gas injection. At $q_{min} \sim 1$, "high- ℓ_i " plasmas transiently reach $\beta_N > 5$ with excellent confinement, but MHD avoidance and profile control are needed to achieve stationary high performance.

¹Supported by the US DOE under DE-AC52-07NA27344, DE-FC-02-04ER54698, DE-AC05-00OR22725, SC-G903402, DE-FG02-89ER53296, DE-FG02-08ER54981, DE-FG02-07ER54917, DE-FG02-04ER54761, and DE-AC02-09CH11466.

Chris Holcomb Lawrence Livermore National Laboratory

Date submitted: 12 Jul 2013

Electronic form version 1.4