Demonstration of 200-Mbar Ablation Pressure for Shock Ignition
W. THEOBALD, R. NORA, M. LAFON, K.S. ANDERSON, J.R. DAVIES, M. HOHENBERGER, T.C. SANGSTER, W. SEKA, A.A. SOLODOV, C. STOECKL, B. YAAKOBI, R. BETTI, Laboratory for Laser Energetics and Fusion Science Center, U. of Rochester, A. CASNER, C. REVERDIN, CEA, X. RIBEYRE, A. VALLET, CELIA — The shock-ignition concept in inertial confinement fusion uses a high-power spike at the end of an assembly laser pulse, launching a strong shock wave with an ablation pressure of \(\sim 0.3 \) Gbar that increases in strength as it converges in the imploding shell. A key milestone for shock ignition to be a credible path to ignition is to demonstrate the generation of a seed shock pressure 0.3 Gbar at laser intensities greater than \(5 \times 10^{15} \) W/cm\(^2\). We demonstrate shock pressures close to 0.2 Gbar at \(\sim 4 \times 10^{15} \) W/cm\(^2\) in OMEGA experiments with \(\sim 500\)-\(\mu \)m-diam solid plastic ball targets doped with a small percentage of titanium. The strong shock wave converges in the center of the solid target and heats a small volume of \(\sim 10^3 \mu \)m\(^3\) to temperatures of several hundred eV, creating a short x-ray flash of titanium line emission. The emerging x-ray flash was measured with spatial and temporal resolution, allowing for the laser drive conditions to be inferred by comparison with hydrodynamic simulations. Hot-electron generation was also characterized by the measurement of K\(\alpha \) emission and hard x-ray emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

W. Theobald
Laboratory for Laser Energetics and Fusion Science Center,
U. of Rochester

Date submitted: 12 Jul 2013
Electronic form version 1.4