Abstract Submitted for the DPP13 Meeting of The American Physical Society

Measurements of Plasma Wave Decay to Longer Wavelengths¹ F. ANDEREGG, M. AFFOLTER, C.F. DRISCOLL, UCSD — We measure the decay of plasma waves to longer wavelengths, for both "standard" Langmuir waves with $v_{\text{phase}} \gg \overline{v}$, and for the lower phase velocity "EAW" modes with $v_{\text{phase}} \sim \overline{v}$. These are θ -symmetric standing modes on pure ion or pure electron plasma columns with discrete wavenumbers $k_z = m_z(\pi/L_p)$. A large amplitude $m_z = 2$ Langmuir wave causes phase-locked exponential growth of the $m_z = 1$ wave when they are near resonant, at growth rates $\Gamma_e \propto \delta n_2/n_0$ consistent with cold fluid theory. For larger detuning $\Delta \omega \equiv 2\omega_1 - \omega_2$, mode amplitude A_1 is observed to "bounce" at rate $\Delta \omega$, with amplitude excursions $\Delta A_1 \propto \delta n_2/n_0$ also consistent with cold fluid theory; but A_1 often exhibits a slower overall growth, as yet unexplained by theory. In contrast, a large amplitude $m_z = 2$ EAW mode generally causes either strong phaselocked $m_z = 1$ growth or no growth at all, apparently because the EAW "frequency fungibility" enables $\Delta \omega = 0$, and EAW mode damping is strong until the velocity distribution $F(v_{\text{phase}})$ is "flattened."

¹Supported by PHY-0903877, DE-SC0002451, DE-SC0008693.

Francois Anderegg UCSD

Date submitted: 12 Jul 2013

Electronic form version 1.4