Abstract Submitted for the DPP13 Meeting of The American Physical Society

Weak Nonlinearity Effects in TG and EAW Modes¹ ARASH ASHOURVAN, DANIEL H.E. DUBIN, UCSD — We have studied the nonlinear coupling of Trivelpiece-Gould modes as well as EAW modes, in a cylindrically symmetric plasma with average density n_0 and periodic boundary conditions at the axial ends of plasma. For Trivelpiece-Gould modes, the cold fluid formalism gives the slow time evolution of mode amplitudes due to nonlinear couplings. For EAW modes, the Vlasov-Poisson formalism is required. We analyze the coupling between mode $m_z = 2$ with frequency ω_2 and mode $m_z = 1$ with frequency ω_1 , with initial density perturbations $n_2(0) \gg n_1(0)$. For small detuning $\Delta \omega \equiv 2\omega_1 - \omega_2 \ll \omega_1 n_2(0)/n_0$, mode amplitude n_1 grows exponentially in time due to resonant parametric interaction with mode $m_z = 2$, at a rate Γ which is linearly proportional to $n_2(0)$. For $\Delta \omega \gg \omega_1 n_2(0)/n_0$, mode amplitude n_1 oscillates about its initial value, with frequency $\Delta \omega$ and amplitude $n_1^{(2)} \propto n_2(0)n_1(0)$. In both cases the theory is consistent with experiments.

¹Work supported by PHY-0903877, DE-SC0002451, DE-SC0008693.

Daniel Dubin UCSD

Date submitted: 12 Jul 2013

Electronic form version 1.4