100 Hz repetition rate, high average power, plasma-based soft x-ray lasers

BRENDAN REAGAN, KEITH WERNING, CORY BAUMGARTEN, MARK BERRILL, LEON DURIVAGE, FEDERICO FURCH, ALDEN CURTIS, BRADLEY LUTHER, DINESH PATEL, CARMEN MENONI, VYACHESLAV SHLYAPTSEV, JORGE ROCCA, Colorado State University — Numerous applications demand high average power / high repetition rate compact sources of coherent soft x-ray radiation. We report the demonstration table-top soft x-ray lasers at wavelengths ranging from 10.9nm to 18.9nm from plasmas created at 100Hz repetition rate. Results includes a record average power of 0.15mW at $\lambda = 18.9$nm from a laser-produced Mo plasma and 0.1mW average power at $\lambda = 13.9$nm from a Ag plasma. These soft x-ray lasers are driven by collisional electron impact excitation in elongated line focus plasmas a few mm in length heated by a compact, directly diode-pumped, chirped pulse amplification Yb:YAG laser that produces 1J pulses of ps duration at 100Hz repetition rate. Pulses from this laser irradiate the surface of polished metal targets producing transient population inversions on the $4d^1S_0 \rightarrow 4p^1P_1$ transition of Ni-like ions. Tailoring of the temporal profile of the driver laser pulse is observed to significantly increase soft x-ray laser output power as well as allow the generation of shorter wavelength lasers with reduced pump energy.

Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

Brendan Reagan
Colorado State University

Date submitted: 12 Jul 2013