Abstract Submitted
for the DPP13 Meeting of
The American Physical Society

Extending crystal options in x-ray polarization splitting

NINO PEREIRA, Ecopulse. Inc, MATTHEW WALLACE, RADU PRESURA, University of Nevada, Reno — Anisotropy in a plasma, as may be produced by some anisotropic heating mechanism like an electron beam possibly accelerated by a laser, can sometimes be inferred from the polarization of the plasma’s x-rays. The polarization is the difference between two linearly polarized spectra. These are usually obtained with two diffracting crystals in two different locations, hence not necessarily from the same plasma. Interweaving the two crystals [1], as is possible when crystals have threefold symmetry, ensures that the two polarized spectra come from the same radiation source. This paper discusses how crystals of the right type could be used for polarization splitting even though they may not have been cut expressly for the purpose. With the proper mounting common high quality but low-cost crystals such as Si (111) can be used for polarization splitting, and even quartz crystals intended for polarization-splitting could be used with unanticipated photon energies in an asymmetric orientation.


1Supported by DoE through UNR under subcontract UNR-13-25

Nino Pereira
Ecopulse. Inc

Date submitted: 12 Jul 2013

Electronic form version 1.4