The Magnetic Field Distribution of Single Exploding Wire Aluminum Plasmas

KATE BLESENER, SERGEI PIKUZ, TANIA SHELKOVENKO, DAVID HAMMER, Cornell University, YITZHAK MARON, RAMY DORON, VLADIMIR BERNSHTAM, LEONID WEINGARTEN, YURI ZARNITSKY, Weizmann Institute of Science — The exploding wires were driven by the 13 kA Low Current Pulser LCP3 at Cornell University, employing high-resolution time-gated emission spectroscopy at visible wavelengths to determine the plasma parameters as a function of radial position and time. The distribution of current through single exploding aluminum wires was determined through time resolved studies of the magnitude of the magnetic field as a function of position. To study the magnetic field we used the Zeeman Broadening technique developed at the Weizmann Institute of Science [1].


This research is supported by the DOE/NNSA joint program in HEDLP under contract DE-SC0002263 and by the NNSA SSAA program under DOE Cooperative Agreement DE-NA0001836.

Kate Blesener
Cornell University

Date submitted: 12 Jul 2013