Interaction of relativistic laser pulses with near-critical density plasma

L. WILLINGALE, C. ZULICK, F.J. DOLLAR, A. MAKSIMCHUK, Z. ZHAO, University of Michigan, G.J. WILLIAMS, H. CHEN, A.U. HAZI, E. MARLEY, LLNL, W. NAZAROV, University of St Andrews — We perform fundamental studies using the relativistic-intensity Titan laser (LLNL) interacting with very low-density foam targets, to study a near-critical density plasma. The interactions are characterized through simultaneous measurements of electron and proton spectra and beam divergence, the reflected and transmitted optical light and the generated x-ray radiation. Trends with plasma density are cross-correlated across different diagnostics to investigate the transition electron heating mechanisms and channeling behavior. Two dimensional particle-in-cell simulations are performed to give better physical understanding of these phenomenon.

This work was partially supported by DOE for LLNL under #DE-AC52-07NA27344.

Louise Willingale
University of Michigan

Date submitted: 12 Jul 2013