Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

J.J. ROCCA, M.A. PURVIS, V.N. SHLYAPTSEV, R.C. HOLLINGER, C. BARGSTEN, Colorado State University, A. PUKHOV, Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D. KEISS, A. TOWNSEND, A. PRIETO, Y. WANG, L. YIN, S. WANG, B. LUTHER, M. WOOLSTON, Colorado State University — Long-lived plasmas that are simultaneously dense and hot (multi-keV) have been created by spherical compression with the world’s largest lasers, and by supersonic heating of volumes with densities on the order of N_{ec} using multi-kJ lasers pulses. We demonstrate volumetric heating of near-solid density plasmas to keV temperatures using ultra-high contrast $\lambda = 400 \text{ nm}$ femtosecond laser pulses of only 0.5 J energy to irradiate arrays of vertically aligned nanowires with 12% average solid density. X-ray spectra show that irradiation of Ni and Au nanowires arrays with relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52+) stages respectively. He-\(\alpha\) line emission greatly exceeds that of the Ni K\(\alpha\) line. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. The increased hydrodynamic-to-radiative lifetime ratio is responsible for a great increase in the x-ray emission.

1Work supported by Defense Threat Reduction Agency grant HDTRA-1-10-1-0079 and by the HEDLP program of the Office of Science of the U.S Department of Energy. Equipment developed under NSF grant MRI-ARRA 09-561. A.P was supported by DFG-funded project TR18

Reed Hollinger
Colorado State University