Spatially and Temporally Resolved Electron Density Measurements of Air Breakdown Plasma Utilizing a 1.4 MW, 110 GHz Gyrotron

S.C. SCHAUB, J.S. HUMMELT, M.A. SHAPIRO, R.J. TEMKIN, Massachusetts Inst of Tech-MIT — We present the latest results of the MIT microwave-frequency air breakdown experiment. The experiment utilizes a 1.4 MW, 110 GHz gyrotron producing 3 microsecond pulses. The linearly polarized beam is focused to a 3.2 mm diameter spot size. The resulting breakdown plasma spontaneously forms a two-dimensional array of filaments, oriented along electric field lines, that propagate toward the source. Two-wavelength laser interferometry is combined with a 2 nanosecond fast gating ICCD to make spatially and temporally resolved electron density measurements of the filament array. Electron density is measured as a function of incident microwave power in a range of pressures of atmospheric air from 25 to 700 Torr.

1This work was supported by an AFOSR Grant on the Basic Physics of Distributed Plasma Discharges.