Abstract Submitted for the DPP14 Meeting of The American Physical Society

Discrete Diffusion Monte Carlo for Electron Thermal Transport JEFFREY CHENHALL, DUC CAO, RYAN WOLLAEGER, GREGORY MOSES, University of Wisconsin, Madison — The iSNB (implicit Schurtz Nicolai Busquet¹ electron thermal transport method of Cao et. al.² is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

¹Schurtz et. al. Phys. Plasmas **7**, 4238 (2000) ²Cao et. al. J. Comput. Phys. (Submitted 2014)

> Jeffrey Chenhall University of Wisconsin, Madison

Date submitted: 09 Jul 2014

Electronic form version 1.4