ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

BRANDON SORBOM, MIT, JUSTIN BALL, MIT, Oxford, TIMOTHY PALMER, FRANCO MANGIAROTTI, JENNIFER SIERCHIO, PAUL BONOLI, CALE KASTEN, DEREK SUTHERLAND, HAROLD BARNARD, CHRISTIAN HAAKONSEN, JON GOH, CHOONGKI SUNG, DENNIS WHYTE, MIT — The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

Brandon Sorbom
MIT

Date submitted: 09 Jul 2014

Electronic form version 1.4