Abstract Submitted for the DPP14 Meeting of The American Physical Society

Probing Runaway Electrons with Nanoparticle Plasma Jet¹ I.N. BOGATU, J.R. THOMPSON, S.A. GALKIN, J.S. KIM, FAR-TECH, Inc. — The injection of C_{60}/C nanoparticle plasma jet (NPPJ) into tokamak plasma during a major disruption has the potential to probe the runaway electrons (REs) during different phases of their dynamics and diagnose them through spectroscopy of C ions visible/UV lines. A C₆₀/C NPPJ of ~ 75 mg, high-density (>10²³ m⁻³), hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ($\sim 1 \text{ ms}$) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to $\sim 2.4 \times 10^{21}$ m⁻³, ~ 60 times larger than typical DIII-D pre-disruption value. We will present the results of our investigations on: 1) C_{60} fragmentation and gradual release of C atoms along C_{60} NPPJ penetration path through the RE carrying residual cold plasma, 2) estimation of photon emissivity coefficient for the lines of the C ions, and 3) simulation of C_{60}/C PJ penetration to the RE beam location in equivalent conditions to the characteristic ~ 1 T B-field of DIII-D. The capabilities of this injection technique provide a unique possibility in understanding and controlling the RE beam, which is a critical problem for ITER.

¹Work supported by US DOE DE-SC0011864 grant

Ioan-Niculae Bogatu FAR-TECH, Inc.

Date submitted: 09 Jul 2014

Electronic form version 1.4