Abstract Submitted for the DPP14 Meeting of The American Physical Society

High-density carbon (HDC) capsule designs for α -heating and for ignition¹ D. HO, A. AMENDT, D. CLARK, S. HAAN, J. MILOVICH, J. SALMONSON, G. ZIMMERMAN, L. BERZAK HOPKINS, J. BIENER, N. MEEZAN, C. THOMAS, L. BENEDICT, S. LE PAPE, A. MACKINNON, S. ROSS, LLNL — We show capsule designs that have HDC ablators, using 2, 3 and 4 shocks. Their advantages and disadvantages will be discussed. Two-shock designs have the shortest pulse length but have the worst 1-D ignition margin because of the high fuel adiabat. Four-shock designs have the highest 1-D ignition margin with the lowest adiabat, but have higher RT ablation front growth. This disadvantage can be overcome by using a picket to generate the 1st shock. The picket reduces the RT growth factor while the decaying 1st shock lowers the fuel adiabat further. The picket has the additional advantage of shortening the pulse length. Dopant requirements for different hohlraums will be discussed. A 3-shock design for achieving alpha heating is described, which can use either high-gas-fill (1.6 mg/cc) or near-vacuum hohlraums. A rugby-shaped hohlraum with low gas-fill (0.5 mg/cc) has high laser coupling efficiency and provides good symmetry for a 4-shock design. Comparison of simulations for selected recent HDC shots with experimental data will be presented.

¹Prepared by LLNL under Contract DE-AC52-07NA27344

D. Ho LLNL

Date submitted: 10 Jul 2014

Electronic form version 1.4