Pump-probe studies of radiation induced defects and formation of warm dense matter with pulsed ion beams

T. SCHENKEL, A. PERSAUD, H. GUA, P.A. SEIDL, W.L. WALDRON, LBNL, Berkeley, CA, E.P. GILSON, I.D. KAGANOVICH, R.C. DAVIDSON, PPPL, Princeton, NJ, A. FRIEDMAN, J.J. BARNARD, LLNL, Livermore, CA, A.M. MINIOR, LBNL and UC Berkeley — We report results from the 2nd generation Neutralized Drift Compression Experiment at Berkeley Lab. NDCX-II is a pulsed, linear induction accelerator designed to drive thin foils to warm dense matter (WDM) states with peak temperatures of ~ 1 eV using intense, short pulses of 1.2 MeV lithium ions [1]. Tunability of the ion beam enables pump-probe studies of radiation effects in solids as a function of excitation density, from isolated collision cascades to the onset of phase-transitions and WDM. Ion channeling is an in situ diagnostic of damage evolution during ion pulses with a sensitivity of $<0.1\%$ displacements per atom [2]. We will report results from damage evolution studies in thin silicon crystals with Li+ and K+ beams. Detection of channeled ions tracks lattice disorder evolution with a resolution of ~ 1 ns using fast current measurements. We will discuss pump-probe experiments with pulsed ion beams and the development of diagnostics for WDM and multi-scale (ms to fs) access to the materials physics of collision cascades e.g. in fusion reactor materials.

[1] W.L. Waldron, et al., NIM A733, 226(2014);

1Work performed under auspices of the US DOE under contract no. DE-AC02-05CH11231.

T. Schenkel
LBNL, Berkeley, CA

Date submitted: 10 Jul 2014
Electronic form version 1.4