Abstract Submitted for the DPP14 Meeting of The American Physical Society

ITER Steady-State Demonstration on DIII-D¹ J.M. PARK, M. MU-RAKAMI, A. SONTAG, S.J. DIEM, Oak Ridge National Laboratory, C.T. HOL-COMB, Lawrence Livermore National Laboratory, J.R. FERRON, T.C. LUCE, General Atomics, DIII-D TEAM — A systematic scan of q_{95} (=4.5, 5.5, 6.5) at constant β_N (~3) and high q_{min} (~1.8-2.1) has been obtained in a lower single null ITER-like shape to study confinement, stability and edge pedestal characteristics using off-axis neutral beam current drive for the ITER steady-state mission ($f_{NI} = 1$, Q = 5). The edge pedestal height is found substantially lower than in similar 2008 experiments, resulting in lower f_{NI} due to reduced edge pedestal bootstrap current. Toroidal Alfvén Eigenmode power fluctuation is well correlated with the estimated beam ion diffusion (D_b) . Strong dependency of D_b on q_{95} , q_{min} and neutral beam power (PNB) has been found indicating that lower q_{95} (≤ 4.5) would have reasonably good beam ion confinement ($D_b \ge 0.3 \,\mathrm{m^2/s}$) even at $q_{min} > 2$ and high PNB=12 MW. The calculated ideal β_N stability limit increases with lower q_{95} allowing access to high β_N (>3.5) needed for $f_{NI} = 1$ and Q = 5. This study shows that optimum choice of q_{95} (~5.5) and q_{min} (>2) is crucial to achieving Q = 5 steady-state mission for ITER.

¹Work supported by the US Department of Energy under DE-AC05-00OR22725, DE-AC52-07NA27344 and DE-FC02-04ER54698.

J.M. Park Oak Ridge National Laboratory

Date submitted: 11 Jul 2014

Electronic form version 1.4