Abstract Submitted for the DPP14 Meeting of The American Physical Society

Achieving Steady-State Conditions in the High-Beta Hybrid Scenarios in DIII-D¹ C.C. PETTY, T.C. LUCE, J.R. FERRON, A.M. GAROFALO, A.W. HYATT, G.L. JACKSON, GA, F. TURCO, Columbia U., C.T. HOLCOMB, LLNL, E.J. DOYLE, UCLA — The natural attributes of the hybrid scenario, especially the anomalously broad current profile, with $q_{min} \gtrsim 1$, allows steady-state conditions with zero surface loop voltage to be achieved at 1 MA plasma current in DIII-D. Using efficient central current drive, the surface loop voltage is driven down to zero for > $1\tau_R$, with ~ 50% bootstrap current fraction when β_P is increased above 1.9. Interestingly, good alignment between the current drive and plasma current profiles is not necessary as the hybrid regime self-organizes the current density profile. Steady-state hybrid plasmas can achieve $\beta_N = 3.6$ for the full duration of the NB pulse $(> 1\tau_R)$ without exciting the m/n=2/1 tearing mode, corresponding to β_T up to 3.4%. The thermal energy confinement time is excellent, with confinement factors up to $H_{98y2} = 1.6$ even during strong EC heating. A 0-D physics model demonstrates that attractive scenarios with $Q_{fus}=3.5-3.8$ exist for steady-state operation in ITER and FNSF.

¹Work supported in part by the US DOE under DE-FC02-04ER54698, DE-FG02-04ER54761, DE-AC52-07N27344, and DE-FG02-08ER54984

C.C. Petty GA

Date submitted: 11 Jul 2014

Electronic form version 1.4