Power balance of Lower Hybrid Current Drive in the SOL of High Density Plasmas on Alcator C-Mod Tokamak

I.C. FAUST, G.M. WALLACE, S.G. BAEK, D. BRUNNER, B. LABOMBARD, R.R. PARKER, Y. LIN, S. SHIRAIWA, J.L. TERRY, D.G. WHYTE, MIT PSFC, ALCATOR C-MOD TEAM — Lower Hybrid Current Drive (LHCD) on Alcator C-Mod exhibits low efficiency for densities $n_e > 1 \times 10^{20} \text{ m}^{-3}$ for diverted discharges. Emissivity profiles of Hydrogenic Ly$_\alpha$ and H$_\alpha$ show significant changes during the application of LH wave as high density, along with enhanced parametric decay instability (PDI) and the generation of thermoelectric scrape-off-layer (SOL) currents. A corresponding reduction in X-ray emission from fast electrons in the confined plasma suggest damping of the LH waves in the SOL. A wide-viewing, absolutely-calibrated Hydrogen Ly$_\alpha$ camera was installed to characterize fast timescale ($\sim 0.1 \text{ ms}$) poloidal dynamics of SOL during the application of LHCD. Analyses and results will be shown characterizing the absolute power deposition LHCD as it relates to various plasma null configurations. Ly$_\alpha$ emission is also correlated to various experimental parameters such as SOL electron density and temperature profiles and Lower Hybrid input power in order to elucidate possible damping mechanisms.

1Work is supported by US-DOE awards DE-FC02-99ER54512.