Abstract Submitted
for the DPP14 Meeting of
The American Physical Society

Modeling of Divertor Plates in the Compact Toroidal Hybrid1
G.J. HARTWELL, C.M. SMALL, D.A. ENNIS, J.D. HANSON, S.F. KNOWLTON,
D.A. MAURER, Auburn University — In long pulse length stellarator experiments,
edge island divertors can be used as a method of plasma particle and heat exhaust.
Knowledge of the detailed power loading on these structures and its relationship to
the long connection length scrape off layer physics is a new Compact Toroidal Hybrid
research thrust. We report the results of connection length studies for divertor plates
to be installed in the Compact Toroidal Hybrid (CTH), a five field period torsatron
with $R_0 = 0.75$ m, $a_p \sim 0.2$ m, and $B \leq 0.7$ T. For these studies, CTH will be
operated as a pure stellarator with no ohmically generated plasma current. The
CTH edge rotational transform can be varied from $t_{vac}(a)=0.02–0.35$ by adjusting
the ratio of currents in the helical and toroidal field coils. A poloidal field coil is used
to adjust the shear of the rotational transform profile, and hence the size of edge
islands, while the phase of the island is rotated with a set of five error coils producing
an $n=1$ perturbation. For the studies conducted, a magnetic configuration with a
large $n=1$, $m=3$ magnetic island at the edge is generated. Results from multiple
possible divertor plate locations relative to the island structure will be presented.

1This work is supported by U.S. Department of Energy Grant No. DE-FG02-
00ER54610

Gregory Hartwell
Auburn Univ

Date submitted: 11 Jul 2014

Electronic form version 1.4