Abstract Submitted for the DPP14 Meeting of The American Physical Society

Characteristics of Low-q(a) Disruptions in the Compact Toroidal Hybrid¹ M.D. PANDYA, M.C. ARCHMILLER, D.A. ENNIS, G.J. HARTWELL, D.A. MAURER, Auburn University — Tokamak disruptions are dramatic events that lead to a sudden loss of plasma confinement. Disruptions that occur at low edge safety-factor, q(a), limit the operation of tokamaks to q(a) > 2. The Compact Toroidal Hybrid (CTH) is a torsatron-tokamak hybrid with a helical field coil and vertical field coils to establish a stellartor equilibrium, while an ohmic coil induces plasma current. A feature of the CTH device is the ability to adjust the vacuum rotational transform, t_{vac} $(t=\frac{1}{q})$, by varying the ratio of current in the helical and toroidal field coils. The value of edge t_{vac} can be varied from about 0.02 to 0.3 $(q_{vac}(a) \sim 50 \text{ to } 3.3)$. Plasma discharges in CTH are routinely observed to operate with q(a) < 2, and in some cases as low as $q(a) \sim 1.1$. In CTH, low-q(a) disruptions are observed with a dominant m/n=3/2 precursor. The disruptivity of plasma discharges is over 80% when $t_{vac}(a) < 0.04$ ($q_{vac}(a) < 25$) and as $t_{vac}(a)$ is increased further, the disruptivity of the plasma discharges decreases. The disruptions are completely suppressed for $t_{vac}(a) > 0.07$ $(q_{vac}(a) \sim 14)$.

¹This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

> Mihir Pandya Auburn University

Date submitted: 11 Jul 2014

Electronic form version 1.4