Abstract Submitted for the DPP14 Meeting of The American Physical Society

Observation of Rayleigh-Taylor instability growth and evolution toward longer wavelengths at a decelerating magnetized-plasma interface COLIN ADAMS, UNM, AUNA MOSER, SCOTT HSU, JOHN DUNN, LANL, MARK GILMORE, UNM — The interaction of a high-Mach-number plasma jet propagating into a background magnetic field is studied experimentally on the Plasma Liner Experiment [1]. The jets, generated by plasma railguns, have densities and temperatures of order 10^{14} cm⁻³ and 1 eV, respectively, at the time of interaction with the magnetic field (\sim few hundred G). Due to ringing railgun current, the jet is comprised of a series of "blobs" traveling at $\sim 40-70$ km/s, arriving at the region with the applied field at $\sim 20{-}30 \ \mu s$ intervals. When a trailing jet arrives and interacts with the remnants of the leading jet and compressed magnetic field, growing fingers are observed with a multi-frame camera at the front of the trailing jet. The fingers evolve toward longer mode wavelength (\sim few cm) as the incoming jet penetrates into the magnetized region. Spectrometer and interferometer data show deceleration of the incoming jets against the lower-density magnetized background at approximately 10^{10} m/s^2 . We compare experimental results to theoretical and computational predictions, showing consistency of the observations with Rayleigh-Taylor instabilities with magnetic and/or viscous stabilization.

[1] S. C. Hsu et al., Phys. Plasmas 19, 123514 (2012).

Colin Adams University of New Mexico

Date submitted: 11 Jul 2014

Electronic form version 1.4