Transport of Fusion Alpha Particles in ITER Scenarios

E.M. Bass, UCSD, R.E. Waltz, GA — We predict the fusion-born alpha particle density in steady-state and hybrid (reverse shear) ITER scenarios with an integrated 1D transport model [1]. The model combines “stiff” critical gradient alpha-driven Alfvén eigenmode (AE) transport with a quasilinear approximation of microturbulent transport [2]. In an ITER baseline case [3], AE transport is found to redistribute alphas within the core but not propagate to the loss boundary. The remaining microturbulence at the edge causes negligible alpha-channel energy flux there (neglecting ripple loss). We set the AE stiff transport critical gradient threshold at $g_{AE} = g_{ITG}$, below which microturbulence can non-linearly suppress AE transport [4], and the more stringent condition $g_{AE} = 0$.

1Work supported in part by the US DOE under GA-Grant No. DE-FG02-95ER54309 and SciDAC-GSEP Grant No DE-FC02-08ER54977

E.M. Bass
UCSD

Date submitted: 11 Jul 2014
Electronic form version 1.4