Dropper for micron and submicron size powders for a plasma mass filter1 EUGENE S. EVANS, STEWART J. ZWEBEN, RENAUD GUEROULT, NATHANIEL J. FISCH, Princeton Plasma Physics Laboratory, FRED LEVINTON, Nova Photonics, Inc. — The goal of the Plasma Mass Filter (PMF) experiment at PPPL, in collaboration with Nova Photonics, Inc., is to achieve separation between high-Z and low-Z atoms, for possible application to processing of nuclear waste to remove the highly radioactive high-Z components. The PMF features a rotating plasma column in which centrifugal forces push high-mass ions out of the plasma radially, while low-mass ions exit the plasma axially. In order to control the injection location, high-Z materials are introduced in powder form into the PMF plasma. The current experiment is limited to \sim1 kW RF, giving a calculated maximum flow rate of \sim0.1 mg/s. An electron temperature of a few eV and assumptions about the residence time of the dust particles in the PMF plasma limits the calculated maximum particle size to \sim1 μm. While previous dusty plasma experiments have dealt with particles on the order of 2-3 μm, submicron particles are comparatively more difficult to manipulate under vacuum due to increased Van Der Waals and electrostatic forces. A powder dropper capable of reliably dropping micron and submicron-size particles at this flow rate is being developed, consisting of a mesh-bottomed container that is coupled to vibration motors.

1This work supported by DOE contract DE-AC02-09CH11466

Eugene S. Evans
Princeton Plasma Physics Laboratory

Date submitted: 11 Jul 2014