Abstract Submitted for the DPP14 Meeting of The American Physical Society

Scaling of Global LHCD Efficiency in Alcator C-Mod¹ S. SCOTT, PPPL, P. BONOLI, R. MUMGAARD, S. SHIRAIWA, G. WALLACE, D. WHYTE, MIT/PSFC — A database of global current-drive efficiency by Lower Hybrid waves has been assembled covering nine years of C-Mod operation. Plasma conditions were averaged over 50-ms time slices during equilibrated current-profile time periods, excluding transient events such as Prad spikes. The database comprises 1800 time slices spanning: PLH < 1.1 MW, $n_{\parallel} = 1.5 - 2.3$, Ip = 0.3 - 1.0 MA, nebar = 0.35 - 1.5 e 20. Nine percent of the data points are approximately non-inductive ($\Delta V/V > 0.9$), while 17 percent experience low m, n MHD that degrades the LHCD efficiency. During LHCD, a simple Spitzer model is used to estimate the residual inductively-driven current which scales the pre-LH current by the ratio of the loop voltage to the pre-LH loop voltage, correcting also for the change in conductivity. The current-drive efficiency is = nebar R I_{LHCD}/P_{LH} [10²⁰ MA/m² MW], where I_{LHCD} is the current defined as η driven by LH waves and P_{LH} is the forward-directed LH power. In approximately non-inductive, MHD-free plasmas, the global current drive efficiency shows a striking positive correlation with plasma current, $\eta = 0.065 + 0.40 \text{ x Ip [MA]}$, reaching a value of $\eta = 0.47$ at Ip=1.02 MA. A positive but weaker correlation between η and Teo does not explain the η dependence on Ip. Preliminary GENRAY/CQL3D simulations at Ip=1.0 MA predict 900 kA of driven current versus 1000 kA observed. Comparisons of η to numerical simulations over a wide parameter range will be discussed.

¹Work supported by DoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

S. Scott PPPL

Date submitted: 11 Jul 2014

Electronic form version 1.4