Abstract Submitted for the DPP14 Meeting of The American Physical Society

One and two dimensional electromagnetic gyrokinetic PIC simulation by δf method C.M. CHEN, Y. NISHIMURA, C.Z. CHENG, Institute of Space and Plasma Sciences, National Cheng Kung University — An electromagnetic gyrokinetic Particle-in-Cell simulation is studied aiming at long-wave-length magnetohydrodynamic instabilities. A fully nonlinear characteristic method (δf method) of electrostatic gyrokinetic theory is employed. For a one dimensional geometry, "0.5 dimension" is taken in "y-direction" of the configuration space and another "0.5 dimension" is taken in the " v_z -direction" of the velocity space. Recent electromagnetic δf simulation shows optimistic results. We revisit the importance of the conservation properties in the low dimensional geometries. This work is supported by National Science Council of Taiwan, NSC 100-2112-M-006-021-MY3 and NSC 103-2112-M-006-021-MY3.

¹S. E. Parker and W. W. Lee, Phys. Fluids B **5**, 77 (1993)

²A.Mishchenko and A. Zocco, Phys. Plasmas **19**, 122104, 2012; A. Bottino, T. Vernay, and B.Scott, Plasma Phys. Controlled Fusion **53**, 124027 (2011).

Yasutaro Nishimura National Cheng Kung University

Date submitted: 11 Jul 2014 Electronic form version 1.4