ELM Suppression in DIII-D ITER-like Plasmas Using n=2 Magnetic Perturbations

R. NAZIKIAN, B.A. GRIERSON, M. OKABAYASHI, B.J. TOBIAS, PPPL, D. ELDON, T.E. EVANS, N.M. FERRARO, R.J. GROEBNER, C. PAZ-SOLDAN, E.J. STRAIT, GA, S.R. HASKEY, ANU, J.D. KING, ORISE, G.R. MCKEE, U. Wisc., R.A. MOYER, D.M. ORLOV, UCSD, M.W. SHAFER, ORNL — A robust window of edge localized mode (ELM) suppression was observed at elevated magnetic safety factor \(q_{95} \approx 4.1 \) in ITER-like plasmas with even parity \(n=2 \) resonant magnetic perturbation (RMP) using the internal I-coils. Variation of the upper and lower I-coil phasing was used to explore the importance of pitch alignment vs kink alignment for ELM suppression. Both the pedestal density and ELM suppression were strongly dependent on I-coil phasing and a large variation in the plasma response amplitude was measured on multiple diagnostics. Surprisingly, toroidal rotation of the even parity \(n=2 \) RMP led to the loss of ELM suppression, indicating that components of the residual error field orthogonal to the kink mode may be important near the threshold for ELM suppression.

\(^1\)Work supported by the US Department of Energy under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-AC05-06OR23100, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FG02-07ER54917, and DE-AC05-00OR22725.

R. Nazikian
PPPL