Ultra-Bright X/γ Rays from Laser-Wire Target Interaction

TONG-PU YU, YAN YIN, FU-QIU SHAO, College of Science, National University of Defense Technology, Changsha 410073, China, ALEXANDER PUKHOV, Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany — With the rapid development of laser facilities around the word, tabletop X/γ rays source based on laser plasma interaction becomes more and more important since its potential applications in medicine, science, and engineering. By using three-dimensional particle-in-cell simulations with radiation reaction effect incorporated, we study the dynamics of intense laser wire target interaction. When a circularly polarized laser pulse at an intensity of 10^{21}W/cm^2 irradiates a solid wire target with a transverse radius of 1.0 micrometers and a longitudinal length of 7 micrometers, electrons dragged out from the skin-length oscillate in the circularly polarized laser field transversely and are accelerated by the ponderomotive force in the forward direction. The electrons beyond the skin-length in the target reflux and move in the opposite direction to the laser propagation, providing a large amount of electrons for transverse oscillation. Finally, ultra-bright femtosecond-class synchrotron-like X/γ rays with a cut-off photon energy of about 10MeV are emitted in a very small cone angle, which may diverse applications in future.

The work was financially supported by NSFC (Grant Nos. 11205243, 91230205, 11375265, and 11175255) and RFDP (Contract Nos. 20114307110020 and 20124307120002).