Radiochemical Signatures of Interfacial Areal Density and Mix in NIF Implosions

CHARLES CERJAN, WILLIAM CASSATA, CAROL VELSKO, ROB HOFFMAN, SCOTT SEPKE, DONALD JEDLOVEC, WOLFGANG STOEFFL, DAWN SHAUGHNESSY, Lawrence Livermore National Laboratory

Recent experimental results from the Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic facility fielded at the National Ignition Facility (NIF) have demonstrated 13N production from charged particle nuclear reactions. This radiochemical product is very sensitive to the fuel-ablator interface areal density. Two specific reactions dominate 13N production: 12C(d,n)13N and 13C(p,n)13N. The short range of the energetically up-scattered deuterons from the cold DT fuel layer restricts the production to the proximate ablator interface thus providing high sensitivity to the interfacial configuration. Although the proton-mediated reaction is almost equally favorable, the small natural abundance of 13C suppresses this contribution to 13N production. Representative HYDRA simulations are used to illustrate these observed effects.

1This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.