Scaling of Electron Thermal Conductivity during the Transition between Slab and Mixed Slab-Toroidal ETG Mode

VLADIMIR SOKOLOV, ABED BALBAKY, AMIYA K. SEN, Columbia University — Transition from the slab to the toroidal branch of the electron temperature gradient (ETG) mode has been successfully achieved in a basic experiment in Columbia Linear Machine CLM [1]. We found a modest increase in saturated ETG potential fluctuations ($\sim 2\times$) and a substantial increase in the power density of individual mode peaks ($\sim 4-5\times$) with increased levels of curvature. We have obtained a set of experimental scalings for electron thermal conductivity χ_{e} as a function of the inverse radius of curvature R_c^{-1} for different fluctuation levels of the initial slab ETG mode. We found that thermal conductivity for pure slab modes is larger than it is for mixed slab-toroidal ETG modes with the same level of mode fluctuation. This effective reduction in diffusive transport can be partly explained by the flute nature of the toroidal ETG mode.

This research was supported by the Department of Electrical Engineering of Columbia University.