Abstract Submitted for the DPP15 Meeting of The American Physical Society

Pressure anisotropy induced by velocity shear DANIELE DEL SARTO, Université de Lorraine, France, FRANCESCO PEGORARO, FRANCESCO CALIFANO, Pisa University, Italy — In a collisionless magnetized plasma a sheared velocity field may lead to the anisotropization of an initial Maxwellian state. By including the full pressure tensor dynamics in a fluid plasma model, we show, analytically and numerically, that a sheared velocity field makes an initial isotropic state anisotropic and non-gyrotropic, i.e., makes the plasma pressure tensor anisotropic also in the plane perpendicular to the magnetic field. The propagation of transverse magneto-elastic waves in the anisotropic plasma affects the process of formation of a non-gyrotropic pressure and can lead to its spatial filamentation [1]. This plasma dynamics implies in particular that isotropic MHD equilibria cease to be equilibria in presence of a stationary sheared flow. Similarly, in the case of turbulence, where small-scale spatial inhomogeneities are naturally developed during the direct cascade, we may expect that isotropic turbulent states are not likely to exist whenever a full pressure tensor evolution is accounted for.

[1] D. Del Sarto, et al. arXiv:1507.04895 (2015)

Francesco Pegoraro Pisa University

Date submitted: 20 Jul 2015

Electronic form version 1.4